Published 23 July, 2015; last updated 09 November, 2020
The brain probably stores around 10-100TB of data.
According to Forrest Wickman, computational neuroscientists generally believe the brain stores 10-100 terabytes of data.1 He suggests that these estimates are produced by assuming that information is largely stored in synapses, and that each synapse stores around 1 byte. The number of bytes is then simply the number of synapses.
These assumptions are simplistic (as he points out). In particular:
We estimate that there are 1.8-3.2 x 10¹⁴ synapses in the human brain, so according to the procedure Wickman outlines, this suggests that the brain stores around 180-320TB of data. It is unclear from his article whether the variation in the views of computational neuroscientists is due to different opinions on the assumptions stated above, or on the number of synapses in the brain. This makes it hard to adjust our estimate well, so our best guess for now is that the brain can store around 10-100TB of data, based on this being the common view among computational neuroscientists.
The math behind these estimates is fairly simple. The human brain contains roughly 100 billion neurons. Each of these neurons seems capable of making around 1,000 connections, representing about 1,000 potential synapses, which largely do the work of data storage. Multiply each of these 100 billion neurons by the approximately 1,000 connections it can make, and you get 100 trillion data points, or about 100 terabytes of information.
Neuroscientists are quick to admit that these calculations are very simplistic. First, this math assumes that each synapse stores about 1 byte of information, but this estimate may be too high or too low…”