Published 10 April, 2015; last updated 10 December, 2020
Cortical neurons are estimated to spike around 0.16 times per second, based on the amount of energy consumed by the human neocortex.1 They seem unlikely to spike much more than once per second on average, based on this analysis.
Lennie 2003 estimates the rate of neuron firing in the cortex based on estimates for energy spent on Na/K ion pumps during spikes, and the energy required by Na/K ion pumps per spike.
Lennie produces estimates for energy consumed in three parts:
However, other authors report higher fractions of cortical energy are spent on spiking. Laughlin 2001 writes that spiking accounts for 80% of total energy consumption in mammalian cortex.5 Other work by Laughlin and Attwell, which is a primary source for Lennie’s estimates, reports that spiking consumes around 47% of energy.6
Our understanding is that the difference can be attributed to differences between the rodent brain and the human brain, and the scaling estimates from one to the other. We are not particularly confident in this methodology.
According to Lenny, each spike consumes around 2.4 * 10⁹ molecules of ATP.7 This estimate is produced by scaling up estimates for the rat brain.8 The estimates for the rat brain were inferred from ‘anatomic and physiologic data’, which we have not scrutinized.9 We are not particularly confident in this scaling methodology. These estimates appear to be produced by counting ion channels and applying detailed knowledge of the mechanics of ion channels (which consume a roughly fixed amount of ATP per transported molecule).
We saw above that the cortex uses 3.9 * 10²⁰ ATP/minute for spiking, and that each spike consumes around 2.4 * 10⁹ molecules of ATP. So the cortex overall has around 2.7 * 10⁹ spikes per second. There are 1.9 *10¹⁰ neurons in the cortex, so together we can calculate that these neurons produce around 0.16 spikes per second on average.10
Even assuming that essentially all of the energy in the brain is spent on signaling, this would introduce a bias of only a factor of 8 in Lennie’s estimates. On page S1 Lennie presents an analysis of other possible sources of error, and overall it seems unlikely to us that the estimate is too low by more than an order of magnitude or so.
…Thus, the minimum Na+ influx to initiate the action potential and propagate it is 2.88 × 10⁸ Na+ (if dendrite depolarization were due to entry of Ca2 + instead of Na+ , with each Ca2 + extruded in exchange for 3 Na+ , this figure would increase by 6.8%). A realistic estimate of the Na+ entry needed is obtained by quadrupling this to take account of simultaneous activation of Na+ and K+ channels (Hodgkin, 1975), resulting in 11.5 × 10⁸ Na+ which have to be pumped out again, requir- ing 3.84 × 10⁸ ATP molecules to be hydrolyzed (Figs. 1B, 2, and 3). This 4-fold increase is validated by calculations by A. Roth and M. Hausser (as in Vetter et al., 2001), based on cell morphology and ionic current properties, which give ATP values of 3.3 × 10⁸ for a cortical pyramidal cell with a myelinated axon, and 5.4 × 10⁸ for a hippocampal pyramidal cell with an unmyelinated axon, similar to the estimate made above.” Attwell and Laughlin 2001 (pdf download)